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TITRODUCTIO

This investigation treats a truncated sequential test for testing

a simple hypothesis against a simple alternative. Attention is con-

fined to the case of sampling from a Poisson population. Although

Wald's [171 sequential probability ratio test (SPRT) will termi-

nate with probability one at some staGe of an experiment, there is

no Guaranteed upper bound for the sample size of this test. However,

for cases in which time and cost of sampling are involved we often

have to face the situation of maing a definite decision within a

given number of trials. With this in mind, several sequential

tests, such as Anderson's /17, Armitaae's [27 and Donnelly's _37,

have been proposed which are truncated within some fixed staGe. How-

ever, none of these are directly applicable to Poisson sampling.

Here, as a variation of the SPRT, we treat hll's [-7 minimira

probability ratio test (MPRT). Uhereas for the SPRT the rejection

and acceptance lines are parallel, for the IRT these tVio lines con-

verge so that the test alwys terminates with a definite decision by

a predetermined stage.

More specifically, we present and cocpare several test procedures

for testing whether a Poisson parameter has value %, or X2 (speci-

fied numbers) based on a sequence of independent observations from

a Poisson population. The test procedures considered here are:

'The numbers in square brackets refer to the bibliography listed at

the end.



2

i) the sequential probability ratio test, both untruncated

(SPRT) and truncated (SPRT 0)(Chapter 1),

ii) the minimum probability ratio test (N.WRT) (Chapter II), and

iii) the most powerful fixed sample size test (FSST) (Chapter III).

A diagram for carrying out these tests appers in Figure 1 2(A.2).

A requirement in all of these test procedures is that each error

probability should not exceed a coanon specified level a. The bases

for comparison of the test procedures are the operating characteristic

(OC) function, the expected sample size (ASh1) function, and the stan-

dard deviation of the sample size (Sw) function. Hoeffding's lower

bound [ 57 (HLB) on the ASN at an intermediate value is also presented.

(Chapter III)

Major attention is given to the 11RT since the other procedures

are quite well known. An extensive discussion of this test pro-

cedure appears in Chapter II. Actually, the PW can only guarantee

an upper bound on an average of the two error probabilities. Achieving

equal error probabilities hinges an the choice of an intermediate

Xo value. Xo is here chosen to make equal the divergence (a con-

cept frou information theory) between X1 and Xo and between Xo

and X2 " This value of Xo is denoted D. Some consideration is

also given to 0 W s, the slope of the S acceptance lines. The

calculations indicate that either of these choices is quite success-

ful, D being slightly better for moderate or large a values and

a being slightly better for small a values (< .01). (See the

tables and Chapter V.)

2All figures and tables appear in the Appendix.
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For the 11RT, calculation of seven points on the 0C curve, ASM

curve and SD curve were carried out, a = .1, .05, .01 and .001, for

the following pairs of hypotheses:

Table 1____ 2o

I . .3 D

II . .8 D

III .5 1. D

IV 5. 8. D

V .1 .5 D and s

VI 1. 2. D and s

Also presented in Table I and VI are the sample size nF for the

FSST, the maxiwm sample size no of the MPRT, Hoeffding's lower

bound at D and s, and the ASH of the SPRT at four values, 0, I ,

s, and X calculated by Wald's approximation [17. The exact cal-

culations were performed on the UNIVAC 11053 by a program described in

Chapter IV and A.7.

For purposes of comparing the three test procedures, the calcu-

lation of 16 points on the 0C curve, ASH curve, and SMI curve were

carried out for all tests, for a : .1, .05, .01, and .001, and for

the following pairs of hypotheses:

Table Figure 1 X2

VII 2 .01 .1

VIII 3 2. 4.

3 In this thesis the coeputer refers to UNIVAC 1105.
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Exact calculattrs were done for the OC, ASH and SD1 functions of the

11RT (%o = D) and the SPRT truncated at no, the maximum sample size

of the !, RT, and Hoeffding's lover bound at X u a s nd D by

the computer. Also calculated were three values of Wald's approxim-

tions to the OC and ASN functions for the untruncated SPRT. The

FSST calculation are based on Poisson tables[87 to the extent avail-

able and otherwise on the normal approximation. A discussion of the

results of the calculations appears in Chapter V.

One use for tests concerning a Poisson population is in quality

control work where the defects in a unit are counted and the quality

of a lot or process is Judged by the average number of defects per

unit. This differs from the test where each unit is placed into

a "defective" or "non-defective" category and the quality of a lot

or process is determined by the total number of defectives.

The defects per unit analysis is useful under the following

conditions.

i) If almost every unit contains at least one defect, a fraction

defective plan ... "dccctive" or "non-defective" classification ...

obviously not feasible for such a case.

ii) For products which are expensive to produce or inspect and

products custcarily Inspected in small lots, it is too costly to ob-

tain samples large enough to assure high discrimination by a fraction

defective plan. However, if the number of samples observed is suffi-

ciently large and the quality of the product is high, the result will

not differ greatly between these two tests.

iii) For this test to apply exactly, the defects must be randdl,

and independently distributed.



CHAPTER I

SEQUENTIAL PROBABILITY RATIO TEST

AND ITS APPLICATION TO THE POISSON DISTRIBUTION

1.1. %l a' s Sc )amiti~l Probbility Rtio Test (SPRT) for

Testing a Simple Hypothesis against a Simple Alternative Al 7.

Suppose X1 , x2 , .... is a sequence of independent observa-

tions with a common density function f(x:e) and let

=I-- (x1, x2 , ... xm) , m = 1, 2, ... , be a sample of size m.

Let a, and a2 be, respectively, the desired probability of accept-

ing the alternative hypothesis H2 : = e2 when the true parameter
is 01, and of accepting the null hypothesis H: = e1 when the

true parameter is e2, and call (il, O2) the strength of the test.

We also denote by di the decision to accept Hi(i = 1. 2).

For any positive integer m, the joint density function fim

of a sample of size m under Hi (i = 1. 2) is

(1.1.1) fim a f(xi:ei) . f(x2:0.) ... f(Xm' i)

Then, the SPRT is carried out as follows:

For suitably chosen A and B (0 < B < 1 <A), at the m-th

stage (m = 1. 2 ... ) of the experiment,

(i) stop sampling and accept H1 if

(1.1.2) B<f 2 /flj < A (J-1.2..m-1) and f /f < B

(ii) stop sampling and accept H2 if
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(i.i.3) B<f 2 j/f 1 6 < A (J=l.2... ml) and f2m/fl A

(iii) eherwise, continue sampling until fm/flm falls into

either category (i) or (ii).

The calculation of A and B to obtain the desired strength

(a,, a2 ) is very laborious. Therefore, in practice Wald suggested

putting

(i.i.4) A'. (1 - a2)/C1 and B'--c 2/( - a1)

as substitutes for A and B, respectively.

Denoting the resulting error probabilities by aj and a2 we

can easily see that

(1.1.5) 'ij .a5 '1 ' ' 2

and therefore, at least one of the inequaities, a < 1 and

% <5 2 , must be satisfied. Mreover, if a1 - a 2 - a, both

inequalities are almost achieved.

The most important characteristics of the SPHT are the opera-

ting characteristic (OC) and the Average Sample Number (ASN) func-

tions. The OC function, L(8), is defined as the probability of

accepting the null hypothesis H1 when the true parameter is 0.

An approximation C17 is given by

Ah(G)1A hl.6)_Be) .

where h satisfies

(1.1.7) Eeh 1

with z = log f(x:e 2)/f(x:e0) . If h -0 is the only solution of

(1.1.7), the right hand side of (1.1.6) is evaluated by taking the
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limit using 1'Hospital's Rule.

The ASN function, Ee(n), is the expectation of the sample

size when e is the true parameter and is approximately given . i_7

by

(1.1.8) E,(n) { L(B)log B~jfL(OrA@7log A} /EeCZ) if EO 0

and

(1.1.9) ES(fl) { L(O0)(log B) 2 +EL( 017(log A)2} 19(z) if E*(z)-O

1.2. The MW tor the Po#som D.stribution.

Suppose xl, x2 ... is a sequence of independent observations

from a Poisson distribution with mean X. We want to test the null

hypothesis H 1:X=Xl against the alternative %:X2(>% l) with strength

(al' a2-

For any positive integer m, the Joint density function of

under H, is

m
(1.2.1) fim = i' e  

3t / m

iil

Hence,

(1.2.2) f 2m/fm- ( EXl)1 -e ( 2"

and

(1.2.3) zi -og f(xi:X2)/f(xi:.l) *xi log('/'-_)-('--"l)

Using Wald's values (1.1.4) for A and B and taking logarithms

of (1.1.2) and (l.l.3), the acceptance rules are given as follows:

At the m-th stage of the experiment,

(i) stop sampling and accept H1 if
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m
(1.2.-4) E xi log ( -2/1 ) - r(X-X1) < log B'iml

ii) stop sampling and accept H2 if

m
(1.2.5) E x i log (x - m(1.2 - I) ? log A'

iml

iii) otherwise, continue experimentation.

(1.2.4) and (1.2.5) are conveniently written as

m log a2/(- (X2-X1)3
(1.2.6) i x <  +

ini log X- log X log X2 " log X

mC1  + s -- a . (say)

l og 1('-C'2) (x2" x1) 2

(1.2.7) E x > +i 1 l o g X 2 - l o g 1 l o g X 2 - l o g X

c 2 + s aab - (say) .

Thus, it is seen that the acceptance lines are parallel straight

lines with the same slope 8 = (N - Xl)/(log X2 - log Xl) which is

independent of the desired error probabilities. However, c1 and c2

are determined by the hypotheses values and the error probabilities.

If c- - q2 a c, from (1.2.6) and (1.2.7) it follows imaediately that

c2 - -c 1 - c (say).

1.3 OC and ASN Functions for the Poisson SPRT.

i) To obtain the OC function of the Poisson SPRT we have to find

that value of h() (see (1.1.7) for which
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)x e" (%2"-%l) hX eI/!(1.3.1) . [( ix)X 2'1 7_h0.) x e-×l x! m 1.

XWO

Sumuing the series and taking logarithms, (1.3.1) leads to

(1.3.2) X(X21%,)h (%) - (%2-%l) h (%) - X = 0.

Then, from (1.1.6), the 0c function L(h) is approxirmately given

by

(1.3.3) L(X) { I } / ( ") _ ( -2.)h.

However, it is impossible to explicitly solve (1.3.2) for h. The

Statistical Research Group, Columbia University [-07, gave an in-

direct method of obtaining a solution, but even this method does not

yield the OC function directly for a given value of %.

For practical purposes, we can find the approxlmte values of

the OC f mction for the following particular values of X to give

a rough picture of the OC function of the test.

(1.3.&) - --

0 1

(1.k.) 1 -

(1.3.6) s c2/(c2 - cl) 1/2 if C-a a

(1. 3-7) \2

(1.-3.8) 0 o

Since for X - s we have h(h) - 0 as the only solution of (13.2.),
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(by L'Hospital's rule) (1.3.6) is obtained by taking the limit value

of (1.1.6).

Wie shall introduce a graphical solution for (1.3.2). By (1.3.2)

h 1og( .2/X1)
(1.3.9) e h l+(X 2 -X1) h/ •

To solve (1.3.9) for h, make the following transformations:

(1.3.10) y1  - e h l2 e 1 + (%2 - %1) h/A .

Since log(x2/r1 ) and (X2 - Xl)/% are fixed numbers for any given

%) Yl is an exponential curve, and y2 is a straight line. Then

the solution of (1.3.2) can be found as the intercept of the straight

line yl and the exponential curve Y2 as shown below

(% o)

(h > 0) Y,

2

h

The accuracy of the graphical solution can be improved, if desired,

by a rewton iterative procedure.

Frem the h found by this method we can obtain the approxima-

tion of L(h) by substituting h into (1.1.6).

ii) In order to obtain the ASN function frm (1.1.8) or (1.1.9)



11

we have to know the OC function, L(h). However, as we have seen

in the preceding parts, the OC function can only be found approxi-

mately. For the following particular values, the following approxi-

vmtions to the ASH function my be found from (1.1.8), (1.1.9) and

(1.3.4) to (1.3.8):

, %Vn)
0 -ez/e

(i.~.ia (s .cMc2 s -2/s if a, - C a

(".3.2 ) a(2- ) c2 + CV}/(?-% )

- (1 - 2a)c/(%2 - s) If al'

(1.3.13) is obtained from (1.1.9) since E, (z) - 0. These particular

five values of X vill serve sufficiently vel for most practical

purposes.

Although it in knov that =,(,=a) exist,,, neither exact nor simple

approximate formAlae to obtain the variance of N have yet been found,

and very few empirical studies have been undertaken. However, from

Tables VII and VIII it vill be seen that the standard deviation of N

for a truncated SPRT tends to be very large when X is between %,

and X2 and a is very small.
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1.4. The Truncated SP1EP

Since the SPR bas no upper bound for the sample size, for prac-

tical purposer we may have to force the teat to terminate at some

definite stage, sa n 0 of the experiment. Wald [147 gave thee

rules for truncation.

If the test does not terminate by the no-th stage, at the no-th

stage,

i) atop sampling and accept H, if

no -1 no

i-i imi

1i) stop sampling and accept H2 if

no -1n
(1.4.2) lo B < E z i < Log Aand 0 < E z i < log A

iul ini

In this thesis we use the following rules for truncating the

SPRT Let n 0 be the maximum sample size of the 14W (se a Chapter

II) under the same kpothesis and strength, then the terminal decision

at the no-th stage will be the following:

i) Stop sampling and accept H, if

no ~ a n0  +bno0
E xi <
iml 2

ii) Stop sampling and accept H2 i

no a n0  bn
E xi ?
iml 2
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If the SM is truncated at a sufficiently large no, it is

to be expected that the error probabilities will not be greatly

affected. However, truncation vill reduce the average sample size

somiewhat, especially for intermeiate X values and it will bave

a similar effect on the UK function.



CHAPTE II

IMI ! PROBABILITY RATIO TEST AND ITS APPLICATION

TO THE POISSON DISTREI3 ON

The expected value of the sample size (ASN) of a sequential

test depends on both the parameter point 9 and the particular

sequential test. Ideally, we would like to find a sequential test

which rainimizes the ASH function for all values of 9, but no such

"uniformly most economical" test exists. Hoeffding [_57 has Given a

lower bound on the AMT at interiediate %-values (Chapter III) for

any sequential test meeting specified bounds on the error probabili-

ties. In order to cam close to achieving this lower bound under cer-

tain conditions, Hall [_&7 introduced the sequential minimn proba-

bility ratio test (IERT). In this chapter we give a general dis-

cussion of this test and then consider the special case of the

Poisson distribution.

2.1. The Minimum Probabilty Ratio TeEt (MPRT) for Testing a Siple

fypothesia against a Sinple Alternative.

Suppose x1., x2 ... is a sequence of independent observations

with a common density function f(x:Q) and consider testing the null

hypothesis H1 : 0 = 0l against the alternative 92: 0 = 02" Let 'o

be a parameter point between Q, and 02 and fi - f(x:Qi)(isO.l.2).

Denote by (xl, x2 ... x) a sample of size m and f the

Joint density function of y.
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We introduce the weight functions kiI and k2 where kI + k 2= 1,

for f1  and fr2  respectively, to obtain a specified weighted average,

a, of the error probabilities (see section 2.2).

The ITRT procedure is described as follows: at the m-th stage

of the experiment,

i) stop sampling and accept R, if

(2.1.1) k 2 f~lf= I a and k 2f~/klf3. <1

ii) stop sampling and accept R2 if

(2.1.2) k if/fo < a and klf /k22f < 1

iii) otherwise, continue sampling.

Since the acceptance lines generally converge at some stage of

the experiment, say n0, the test has the upper bound n0  to the

r.ximum number of trials, and therefore, either category i) or ii)

will occur for some m < no*

2.2. Mlajor Property of the IVWT

Let Pi(d3) a a ' be the probability of making the decision

d(j " 1,2) when Hi(i - 1,2 and i J 3) is true. Then,

(2.2.1) ki cz" k, P1 (d2) - k1 f ' m
m,,Mal

(2.2.2) k2 a' " l 2 P2 (d) - k f f
ml m

m
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where 8s (i = 1.2) is the subsets of the sample space of X for

making decision di, by (2.1.1) and (2.1.2), respectively.

We show one of the important properties of the NPRT by the

following lenma

For the MPRT with specified Go, the specified weighted average

of the true error probabilities is not greater than the preassNned

value a.

Proof: In a- it I obvious that

in k i r k 1 fh im a f om
i=l.2 kii ncf

that is,

(2 2 ) k 1  f f = a P o (2)

m

where P0 (di) is the probability of di when go is the true

parameter value. Similarly, in S1

m

Hence, it follows immediately that

(2 . .5) k, q + k2 a 5 a po(dl) + Po(d2 )_7 a

assuming the acceptance lines converge.

For the case k- k2 - 1/2, from (2.2-.) to (2.2.5) we have

cr35 2a P 0 (dl), q21 52 a P(d 2 ) and cq +c q 5 2 a. If go can
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be so chosen that Po(dl) = Po(d,) - 1/2 , then a<a and % < a.

In any case, at least one of the inequalities must hold since

aj + a 5 2 a.

No method of choosing @o to achieve specified individual error

probabilities is known, except for a limited result in the case of

symetry _7. Such symetry does not obtain in the Poisson case

considered here. We shall attempt to achieve equal error probabilities

by a method described in section 2.4.

2.3. The MPRT for the Poisson Distribution

Let xI, x2 ... be a sequence of independent observations from

a Poisson distribution with mean %. We wish to test the null hypo-

thesis HI. 1 ! 1 against the alternative H2 : X - X2 > Xl), and

assmne weight functions kI - k2 = 1/2 and a < 1/2.

The MPRT is carried out as follows:

at the m-th stage of the experiment,

I) stop sampling and accept H1 if

M x I -'-it '-2 xi

i-l < 2"~/'. m 'x "el" ,X 0 • /xi .

inl

i.e.

Li lo 2CS m(%2~- Xo)
(2.3.1) 3. <. + r. cl+ r:m (say)

iti - log %2- log Xo log %2-o 9X

which iMlies f2m .5 fm

ii) stop sampling and accept R2 if
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- log 2a m(xo-x.)(2-3.2) E x i > + c c2 + re= (say)
iml log X0 - log X1  log X6- log 2a

which implies f > f m

.ii) otherwise, continue sampling.

(2.3.1) and (2.3.2) will define the acceptance lines of the test.

These two lines meet at m = no where

no  1 2-

r2 -r1

and hence, this is the upper bound for the sample size. The actual

maximum sample number no  will be an integer slightly smaller than

ni.
0

An illustrative diagram for carrying out this test with a com-

parison of the truncated SPRT and the FSST appears in Figure 1

in the Appendix.

2.4. A Choice for @o

In the ?PRT it is possible to choose o t any parameter

point other than 91 and @2 depending on our emphasis on the error

probabilities cj and and the weight functions k, and k2.

In this thesis, we ill choose o in an attempt to obtain approxi-

mtely equal error probabilities at 0, i.e. P0 (dl) - Po(d 2 ). From

this point of view, we take 9 au the value which yields equal "di-

vergence" [77 between i and , and between o and 02 "

Suppose the null hypothesis is Hl: f(x) - fl(x) and the alter-

native H2: f(x) = f2(x); then for a given x, the mean information



19

for discrimination per observation in favor of H 1 against H2  is

defined[77 a

I (1:2) f fI(x) 16 d Lx

K cf2 (x)

where K is the entire sample Mae. 1 (2:1) is similarly defined.

Under the assumption that the probability measures for fl(x) and

f2(x) are "absolutely continuous , the Integrals alwys exist.

The divergence D(#.2) between H1 and H2 is defined [7 as

(2.4.1) D(1,2) - I(I:'S) +. 1(211) mfff1 (x) - f2(x)71og !L(xd x.
f 2(x)

D(1,2) is a measure of the difficulty of discriminating betveen

hypotheses Hi and H2, and thus will be a reasonable choice to deter-

mine Q for the MPRT. NUrther detaled discussion concerning in-

formation and divergence vill be found in Kullback -77.

Example: Poisson case

suppose H: X'0 % "" fl( ) " 4 '1 /x'

and

H12: X ' 2 i 2(e. 1
xe1/xi

Then, by definition x e'1x_S x

1(1:2)- - e log 7 -2,:=o x " x

1 ( x(o 1 - log X2 ) - ( "X 2 )
xo X!
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(2.4.2) - (oa l " log x2 ) "l (%" "2)

Similarly,

(2.4-.3) 1(2:1) = (log X2 - log %i) X2 " (%2 " )

Hence, from (2.4.1) to (2.4.3),

(2.4.4) D(l,2) ,- - Xl)(log X2 - log Xl)

For some X ,where "l <o <" 2' the difficulty of discri i-

nating between hypotheses X, and Xo and between X and X2 is

equal. That is, X is obtained from

D (1,0) . D(0,2); that is

(X- X1)(109 Xo - log Xl )  N (2 - o) 0)(log \ - log Xo)

(2.4.5) g(%o). (log X2 -lo Xl)Xo + b .I-Xl)log Xo + (1log Xl-X2lS ')

0 0 .

Newton's approximation method vs used to solve this equation

numerically, starting with the initial value XO. 0 - (Xl + X2)/2.

That is,

Xo.i+ " X + g(xo)/ do g(Xo)

o~~l i- 0 d%. 0 0

(2.4.6) W X0 + X (log X2 -u Xl)+(X2- Y.~log 'V+~llog "l"0 "2
log '2 - log " + (2 -

( i n O .o . . . . .)

with the criterion for stopping the iteration

I Xo.i+l " o.i I _ 10 "
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and i < 200.

By this method, divergence values in the Appendix were computer

calculated. This ,o value is there denoted by D.

A few examples were considered using X0 a s instead of X0 a D;

a comparison of these choices is discussed in Chapter V. It vas found

that D < s.



CHAPTER III

MFIED SAITLE SIZE TEST AND
HOEPTDING'S IOWE OUID FOR THE EIPECTED SAMLE SIZE

31. Most Powerful Test for thkq'I PoisKOUA~IxtijitIqn.

To make a sample size comparison between the MPRT and a fixed

sample size test (FWsT), we need to find the minim=m sample size for

the most powerful FST with specified bounds an the error probabili-

ties. The most powerful FSST is obtained by the Neymn-Pearson

lemna.

For the Poisson case with sample size m, the test is carried

out as follows:

i) accept % if

m xi _-

2m i- > k (>0)
fl xi a /X

ii) otherwise, accept H1

Taking locaritbms on both sides of (3.1.1), it follows that

m
xi (los %- log h) - n(%2 - Xl) ? k'

i-l

and
m

(3.1.2) E xi > k"
i-

We know that the random variable y - E xi has the Poisson dis-
1

tribution with mean m, i.e.
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(3.1.3) g(y) u (m X)y "rA/y

If the Type I error a1 and the size of sample m are given,

k" is obtained as the suallest integer for which

(3.1.4) 1 -F .(k" 1) _5 C'

where F,(x) is the Poisson distribution function at x. If the

Type I error ai and the Type II error a2 are preassigned, the

sample size can be obtained by finding k" and the minimal m which

will satisfy,

(3.1.5) 1 - Fm (k" - 1) .<

and

(3.1.6) FA 2 (k" - 1) <

3.2. Normal Approximtion for the Poisson FSST

If X is large, the Poisson distribution can be approxinated by

the Iforml distribution. That is,

(3.2.1) FX(X) a (x -X +/2*

where t(t)t). (//s ) •"  2  dx

-uI

Then, by (3.1.5) and (3.1.6)

k" - 1 - mX1 + 1/2
(3.2.2) 0 ( . .) ? 1 . Z



k" - 1 a ,2 + 1/2

(2 -'") 0 2

are the required inequalities.

If the Poisson mean is not large, the normal approximation my

not be adequate so that the following rule vas used. If (M 1) 1/2

< 4.0, several integer values were chosen in the neighborhood of

the m which ins obtained from the Normal approximation method.

These were substituted into (3.1.5) and (3.1.6), with suitably chosen

k" s froa the Poisson tables, until (3.1.5) and (3.1.6) were satis-

fied. The mininm such m is the sample size of the most powerful

test. In the tables in Appendix those values obtained by the Noral

approximation appear with *, such as r and FSM

3.3. Hoeffding's Lower Bound (HML) [27

Let xl, x2 ... be a sequence of independent observations with

a comon density function f(x:Q), and suppose we want to test the

null hypothesis Hl: 9 a, apginst the alternative V 9 n "2'

Also, let f(x:Q) - fi(x:Q) under Hi(i - 1.2), and the decision

di is to accept HI .

As one of the optimum properties of the SPRT, it has been proved

[127 that the SPIR minimizes the expected sample size at the points

@1 and 92 subject to specified bounds on the error probabilities.

In general, its expected sample size is laraest when 9 is between

@1 and 02 but not always (see Figure 2). However, there exist

tests which have a smaller expected sample size at intermediate 9

values than the SPRT. Kiefer and Weiss [67 have discussed ipor-
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tant qualitative properties of such tests. These tests M96y be judged

by comparing, at any parameter point Q, the expected s,%mple size of

the test with the sm~allest expected sample size attainable by any

test having the same error probabilities at 91and 02.

The Hoeffding Lower Bound on the expected sample size at any

00 is given by

(3.3-1) EG (N) f {(./)2 - log (C + C )7l/2 .- r / ) 2 A 2

assuming that the following integrals exist

(m32)a- ~x ~ iaf f 0log (f1i d p

and

(333 2 f log (f2/f) tl + 92}?2 0  d~

Also assume that

f 0(x) =0 irnplies rain f a0

and that
2 2

E 0 (E Y)E0(1

is satisfied where - log { f2(x)/f1(x) t l + t

Hoeffding proved [27 that for 11 Go, (3.3.1) gives a lover

bound among all strength (cxl.c2) tests.

For thelformal density function with variance one and mean 1

whr o W 91 - Qan 2 a >0 e ccqred the numerical

values obtained by his lower bound with those of the fixed sample

size test, one of Anderson's tests [!7 and the S'RT of the same

strength (a,~, a2). For a..n a a a < 1/2, the results indicate that
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equality in (3.3.1) is nearly obtainable with a FSMT if a is very

small and with the SPRT if a is sufficiently large. For other a

values, those comnonly used in practice, the XPRT (which coincides

with one of Anderson's tests) nearly attains this bound.

3.4. Noeffding's Lover Bound for the Poisson Distribution

Suppose f(x:%) -i e'%/x ! and we wish to test Ei X %

against H: X ' X2 (>Y) with strenth of the test al - 2 m a

< 1/2. Then, by definition (3.3.2)

0x x x e o /X

W £ o e log "0X

0 -x 4

X-O xi e /X!

S(/x) x log(% ().O( o .xj) 0 eo
X,, 0 O 0DR

(X...) 0' - lo Xi ) - (xo - i).

Therefore,

(3.-4.2) tj - Xo (log Xo - log xl) - (xo - x)

(3 4-3) 92 -X0 (1o X0 - log X2) - (Xo 2 )

Also by definition (3 .3.3)
"-%o 0 x exo

2 f f l og e - (log x- log x.) + (x -X)

+ (log - log X2) + (N - X)"
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0 % e 0 2
. - x x(lo %2- log Xl)+ Xo(iOg " log %2)

X=O X . J

- (xx e 0 /x l{(og "2- l06 l)2 (x - 0)2
XaO

- Xo (1og - log 2

For any 1o ve can obtain Hoeffding's lower bound by substituting

From (3.4 .2) and (3-4-3) it is easily seen that the relation

!1 " t2 = t: is obtained at

X- (%2 - ,)/(log "2 - lo 10 )

and this value of Xo  is equal to a, the con slope of the accept-

ance lines of the SPRT for the Poisson distribution under the same

hypothesis. For Xo - a, Hoeffding's lower bound is given by
2 2 81/ 12

([og{(alog - (slo "+)g /2 To, log
(3.i4.5) , >(N) 2 .. . .... }. .. .

S loc a - X

The E a (N) c the S :Is given approximately by (1.3.13), therefore,

w can compare Hoeffding's lower bound with the approximation of the
SPHT ABU at Xo a s.

The HLB's in the tables in the Appendix were coiuter calculated.



CHAPT IV

TME PROGRAS FOR THE IW AND TIM MWU 0

FOR THE POISSON DISTRIHJTION

In this Chapter we discuss the programs by which the exact

OC, ASH and SI functions of the IaW and SPRT0 were obtained for

the Poisson distribution. The programs (for the InFR and the SPRT )

were ritten in the "IT" language f27 and stored as "K. Fukushim,

N.RT - A" and "K. Kukushima, SPRT - A", respectively, in the library

of the Research Computation Center, the consolidated University of

North Carolina, Chapel Hill, North Carolina, for future use. The

detailed compiler program for the MRT is shown in A.7.

4.1. Brief Explanation of the Program for the I-Off

Let

i (integer): the acceptance boundary for the i-th trial.

m (integer): the rejection boundary for the i-th trial.

P(pi ): the probability of acceptance at the i-th trial.

p(ii)" the probability of rejection at the i-th trial.

p(m,.,): the probability of j defects (j = E x) at the i-th trial.

no: the point at hich the acceptance and rejection lines intersect.
0

a0the maxrhUm. possible number of trials; the least i such that

rnrn <
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nl: the number of Poisson probabilities to be calculated.

n 1 c2 - c1 +

aI , a2 : the ordinates (E x) of the acceptance and rejection lines

at n' •

. 1, X 2, ... X. 11 (input): The parameter points for thich the OC,

ASN and SD functions are to be calculated.

By (1.2.6) and (1.2.7), after we determine the boundaries for

acceptance and rejection and n0 , we perform the following calcula-

tions for (i < n0 )

min. (J,E1-11 )

P(mi.j) k E P(mil.k ) . P,(3 - k)

where P,%(x) is the Poisson probability of x with mean X.

P~m-ir. f- f i
PCmi) - k rZ t P(ml..k) 1 PI(x) if r. 1 r_1

k~ei-l+1 -0

P(-i) 0 0 otherwise

and

i-i iP(-i )  - E E~il~) Z PAx)

The OC, ASN and SDN functions are given by
n

W - E P(ri)

i-i

-kN = i P-m)+P'i )



for

A CaAAISON OF MJFEMAL TEM~ FOR W1 P0ISSMR PARA1WJM
by

Kozo ukushinR

Line nm-
ber from

Pae the top mipitCorrectiar

7 7 /E~)if E,(z) = 0 /Ee,(z 2 ) if E~ = 0

15 7 k fa/ <j 1 k 2 f~an/kr < 1

f/f e4 j2 im 1-12 e 1

%~ e/x m Xi -

17 P20 vhich implies f2,,. fl vbich implies f 2m< ri

19 16 i-e. f 2 (x) e , i.e. f2'' e

20 16 % % ~ )/AI-g(x) %A+ %~OAi+1 j % .3 O~ -x 0A g(%")/
0 10

"A) 17 (2.4,6) ~.+(2.6) -X

3.3 20 The t~.m for canputatiam The time for ca*Upiation

36 16 the NPFT Is uniform2r te SI of the IC'R is wdzformly

53 5 (nos x3) (n, 17)

56 2 (no 571) (nc, 71.)

67 27 .00072 O03 000V,3 0000071 .000034 .000023
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The over'all flow diagram is shown on the following page.
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Input: tAAe(

Al, A2 All

PAI

~~~&.F - +h t p , B .. 1 p e r i h a i e r g m i

A. 7 CT Oesp As ri, L
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4.2. Variable Assignments for 'I1PT - A"

Y 1 (input). -1 Xl 2 (input) - X°  y 3 (input). ' 2

Y 4 (input) - a, Y 28, Y 29 ... y 38 (input)-x, 2 .. . XfU

N 1- i, N 2 a j, N 900 n o , N 902- n1

N10- N 00, n 1 , N500 - N90r , i

N 905 - N 1050 :AjVVauerjc

Y5 - C, Y 6r , Y7 = c2  , Y8-r 2

Y1oo- Y .99: P(m.3 ), Y 500 - Y 999 : P(mi.j)

Y 1000 - y 199: P (3 ) , Y 2000 - Y 24oo: P(Q!)

z o- z 999: E P(x) , z1oo- z 1999: z
-- -- I .

Z 2000- Z 2400 P( i) where 3-, p 12, ... n1

4.3. The Program for "SMT - A"

The storage spaces for the variable assignments are very simL-

lar to the program for the 1PRT, except for the fQollwIng cbnoes.

For input,

i) y1 xI  .% Y aX.y, a .4a 1

ii) the truncation point (N 900 - no ) mst be given

iii) the nuaber of parameter points for which the OC, ASN and

StU functioLs are to be calculated is 1O(Y29, ... Y38) instead of

11 in "MPT - A" .

4.5. Outputs and Capacities of the Programs, ' IMRT - A" and "SPRT-A".

Unconditional outputs for these programs are as follows:
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%lp ho %2 s a and X.1, X2 ... Xll

C1 , rI, c2 , r2, n and n (for the IWRT- A)o 0

c 1 , s and c2 (for the SPRT - A)

a1 and a2 (where a1  = a 2 )

For X a, X2, ... X 11
n n

0 0
E P(ul) , )
i-i i-i

ASN, the variance of N, and SIN

For conditional outputs of the programs, the folloving outputs are

added:

n -n1 and i (i a 0, 1, 2, ... no)

00
P(a) E P,(x) and E PW(x) vhe;,c 0 ,1 2, ...

x=O Xmj

P(mij) for the I-th trial (i 1.2 ... no)

P(mno and P(iM ) (for SPRT- A)

By 'IRT-A" and "SPMT - A", we can take any hypothesis values

and X. and the error probabilities a < - as long as no and

E x do not exceed 40 and 500, respectively. Also, the core

storage used in the computer is 7695 for "IRT - A" and 7752 for

"SPRT - A". However, one can change the program according to the

requirements of each particular problem and a computer capacity.

The time for computation was about three minutes, and the calcu-

lation of the OC, ASN and SDI functions at one parameter point for



each of eight sets of hypotheses with four error levels; th-at is,

one X value for each of thirty-tc test situations, took about

fourteen minutes. Similar time is required for "SP1RT-A".



CHAPTER V

5U1 ARY

In this chapter we discuss the characteristics of the I[PRT

frou the data obtained, with comparison of other tests, the SPR OP

the SPET and the FSST.

By the use of divergence to obtain % and k1 W k2 0 1/2, the

test nearly achieves Po(d) - Po(d 2 ) when a is not very small,

and X1 and "2 are not very distinct. As already mentioned in

section 3.2, the sum of the exact error probabilities, I +I

is smaller than the preassigned level 2a . Moreover, even though

the test for the Poisson distribution is not symmetric, we observe

that l <a, and 2, and if a is not very small, I< at

in general. As mentioned in the introduction, the use of ?o a D

gives slightly better results to achieve P (d) = Po(d) for

large a values and Xo - S gives slightly better results for

small a.

Comparing the OC functions of the MPW with the SPRT° and

FSS the following points may be found:

i) the SPRT has cenerally higher discrimination than the MPRT

between X1 and X2 for small a, the 0C function of the MW

tends to be close to the SPRTQ. However, the difference between

the CC functions is not sufficiently large to be of particular im-

portance; and

ii) the 14PRT has generally higher discrimination for small a than



the FSST except near X and X2' But if a is larGe, the FSST

tends to have uniforrily higher discrimination.

From the tables aL.. graphs shown in the Appendix we see the

following characteristics of the ASN function of the MPRT.

i) The smiler the a-value, the closer to s is the maxinum value

of the AS of the MPRT.

ii) For smll a, the ASH of the NWRT is smaller than both the SPRT0

and SPRT for some values of X between %I and X2, but the raxiuni

of the ASm for the MPRT and SPET are not very different.

iii) The ASN of the MPRT is uniformly smaller than for the FSST ex-

cept for extremely small a values.

iv) The HLB at X = D (and X = s) is nearly attained for large

values of a by the MPRT. For smaller values of a, even though

the ASH of the MPRT is not close to the HIB, it is closer than the

ASIH of the SPET or the FSST.

We observe that for any a values the WRT is uniformly smaller

than for the SPT o0 which is presumnbly smller than for the SPMT.

Therefore, the IWRT u.ier these conditions appears to be ad-

vantaCeous as compared with these other tests when the parameter

point lies near the average of X1 and X, and particularly hen a

is smll. Ever if the ASH of the aWM is slightly larger than of the

SPRT, the use of the NPRT my be reccnended because of its smaller

SMI. Further studies of the I.ST for various weight functions

and k2 should yield useful results.
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APPTDIX I

A.l. Notation

The followin notation is used in the tables and figures

in the Appendix:

OC : the operating characteristic function

ASN : the average sample nurber function

S-? : the standard deviation of the sample size 11

FSST : the most powerful fixed sample size test

HLB : Hoeffdina's lower bound for the ASN

HMRT : the mininu probability ratio test (Xo - D)

the nunbers in parentheses in the tables V and VI were obtained

by the IWET(X 0 s)

SPRT : the sequential probability ratio test

SPET : the sequential probability ratio test

the numbers which have * in the SPIT0  in the tables VII and

VIII were obtained by Wald's approximation for the MW

SPRTo: the sequential probability ratio test truncated at no

a : the specified bound on each error probability

D : X value for which the divergence between X and Xo equals

the divergence between Xo and

s : the slope of the SPMT acceptance lines

nF  : the sample size of the FSST obtained from the Poisson distri-

bution (with linear interpolation in the tables)
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4F  : the sample size of the FSST obtained from Norral approximation

no : the mximuin sample size of the MPRT (%o a D)

no 0 : the maxim u sample size of the 14PRT (ko a

nD  : the HLB at X = D

n : the MB at X a a
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APPENDIX III

A.3. TABLES I - IV: Characteristics of the Poisson MPRT and

SPRT Approximation.

A.3.1. TABLES I - 1, 2, 3, 4.

HI h . against H2 : X ; .3
a - .18205 D = .18652

TABLE I - 1

a .1, n a 52, nF = 31

0C ASN SDN of
k HLB

MPRT SPRT* MPRT SPR* L

0 1. 1. 15. 11. 0.

.1 .9203 .90 22.83 19.75 7.88

.17 .5854 24.63 10.37

a .5175 .50 24.28 21.97 20.4o 1o.62

D .4929 24.11 19.18 10.71

.25 .2112 20.31 10.97

.3 .0932 .10 16.90 13.73 10.13
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TABLE I - 2

a .05, no-- 79, 5

OC ASN SDN of
MPRT SPRT* mm SPRT* HIB

0. 1. 1. 21. 15. 0.

.1 .9594 .95 34.15 29.48 11.07

.17 .5971 39.81 15.09

s .5116 .50 39.28 39.46 34 .37 15.55

D .48o5 38.98 32.17 15.71

.25 .1497 31.32 15.98

03 o455 .05 24.79 20.51 13.99

TABLE I - 3

= .o, no 140, nF = 102

0C ASN SDN of
%. HB

MPRT SPRT* MPRT SPRP* MPRT

0 1. 1. 35. 23. 0.

.1 .9916 .99 59.68 49.96 16.65

.17 .6237 79.49 Z-35

a .5054 .50 78.59 96.1o 71.46 26.47

D .4621 77.88 66.48 26.87

.25 .0706 56.85 26.75

.3 .0o87 .01 41.79 34.76 20.79
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TABLE I - 4

= .001, no 223, n;= 180

OC ASN HB SDN of

x PRT SPR MPRT SPR* m

0 1. 1. 55. 35. 0.

.1 .9991 .999 95.0o4 76.47 22.0o4

.17 .6570 142.18 38.o3

s .5028 .50 141.1 217.1 130.8 4o.22

D .4459 139.7 121.1 41.13

.25 .0256 92.25 39.o4

.3 .00088 .001 65.01 53.19 27.11

A.3.2. TABLES Ii - 1. 2. 3. 4.

Sx- .5 aginst H2: X a .8

a - .63829 D - .64122



II

TA tI, II - 1

a-.1, n- 0  87 -m47

OC ASN S3D
IHAB

MT SPRT* IRT SPRT* IRT

0 1. 1. 11. 8. 0

.5 .9127 .90 31.11 27.38 13.22

.6 .6448 36.09 15.40

, .506a .50 36.07 34.24 31.56 15.80

D .4958 36.3 3o.85 15.83

.7 .2991 33.84 15.99

.8 .0923 .10 27.29 23.42 14-53

TABLE II - 2

a = .05, n0 . 126 n a 78

OC ASN MN

IPRT SP T* la w SPRT* I VT

0 1. 1. 15. 10. 0

.5 .9559 .95 46.87 40.88 18.41

.6 .6773 58.53 22.51

* .50o42 .50 58.93 61.49 53.15 23.23

n .4908 58.85 51.82 23.28

.7 .2491 54.14 23.64

.8 .o48 .05 40.66 34.96 20.32
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TABLE II - 3

a-.01, no = 217 nF = 155

OC ASN SWk HLB
I'TRT 5PRT* 5MqT* MPRT

0 1. 25. 16. o

.5 .9911 .99 82.o2 69.29 27.89

.6 .7368 116.5 38.15

5 .5018 .50 119.3 149.75 -10.. 39.50

D .14831 229.1 107.3 39.62

.7 .1693 104.8 40.82

.8 .0090 .01 70.18 59.26 30.58

TABLE II - 4

cg-.001, no0-350 r=274

OC AMN Sm
mE

IPRT SPRT* I,.PRT SPAT* MPRT

0 1. 1. 4o. 24. 0

.5 .9991 .999 130.4 1o6.1 36.81

.6 .7973 205.5 58.43

.5007 .50 21.3 38.3 201.9 60.08

D .4760 2114.9 195.8 60.36

.7 .1025 179.3 63.20

.8 .00089 .001 110.5 90.69 40.10



A-3.3. TABLES III - 1. 2. 3. 4.

H: X .5 against H2: = 1.

s - .72135 D = .72850

TABLE III - 1

.1, no = 34 lp = 22

OC ASN SDN

___ ._ SPET* PRT 8PRT* HLB VmR

o 1. 1. 6.0 5. 0

.5 .9185 .90 13.81 11.60 5.4o

.65 .6683 15.70 6.45

o .083 .50 15.62 13.93 12.87 6.74

D .4929 15.58 12.41 6.76

.85 .2553 14.11 6.86

1. .o877 .10 .1.47 9.21 6.22

TABLE III - 2

= .05, no = 52 n,=32

oc ASN Sm

IMPRT SPRT* M, RT SPRT* LB I

0 1. 1. 9. 6. 0

.5 .9594 .95 20.33 17.32 7.49

.65 .7054 24.89 9.29

I .5084 .50 25.02 25.02 21.67 9.76

D .488 24.95 2o.84 9.80

.85 .2026 21.95 10.00

1. .o442 .05 16.77 13.76 8.66
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TABLE III - 3

aw-.01, n 0  88 n p-a 64

oc ASN sDm

1NRT SPM* 1HWRT tRT

0 1. 1. 15. 10. 0

.5 .9915 .99 35.42 29.35 31.19

.65 .7655 48.69 15.51

o .5014 .50 9.85 60.93 45.01 16.418

D .41736 49.66 43.11 16.59

.85 .3185 40.82 17.0o

1. .oo84 .o 28.22 23.32 12.81

TABLE InI - 4

a- .001, n0 -142 r , = 113

oc ASK SI

lawT SPR* IM S I .ET

0 1. 1. 23. 14. 0

.5 .9991 .999 56.07 4.93 114.71

.65 .8289 84.77 23.53

5 .5006 .50 89.25 137.64 82.34 24.92

D .460o 88.87 78.61 25.17

.85 .0594 67.96 25.76

1. .00082 .001 44.07 35.69 16.71
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A.3.4. TABIES IV - 1. 2. 3. 4

HI: X a 5. against H2 : X a 8.

a - 6.3829 D - 6.4122

TABLE IV - 1

a., n 0  9, = - 5

OC ASN Ism
~HI 1

mmRT SPET* m _ SfT* _MPRT

0 1. 1. 2. 1. 0

5. .9305 .90 3.80 2.74 1.59

6. .6551 4.54 1.88

a .5290 .50 4.80 3.42 3.16 1.88

D .4919 4.57 3.08 1.91

7. .2793 4.31 1.91

8. .0728 .10 3.48 2.34 1.69

TABLE IV - 2

a - .05, no- 14 , n.,, 8

oc ASN S

0 1. 1. 2. 1. 0

5. .9649 .95 5.39 4.09 2.04

6. .6900 6.87 2.52

a .5W,7 .50 7.43 6.15 5.31 2.52

D .4908 6.91 5.18 2.61

7. .2374 6.37 2.64

8. .0367 .05 4.78 3.50 2.22
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TABLE IV - 3

OC ASN sD

law SPRIT* MWRT SPT*1T

0 1. 1. 3. 2. 0

5. .9929 .99 8.92 6.93 2.94

6. .7447 12.82 4.03

a .5070 .50 13.28 14.98 ii.o4 4.o9

D .4806 13..1 10.73 4.19

7. .1605 3.56 4.31=

8. .0070 .01 7.76 5.93 3.18

TABLE IV - 4

a= .001, no0 - 35, n=28

Oc ASN UDM
X HLB

I PRT SpIT* IWRT SjT* IIPRT

0 1. 1. 4. 3. 0

5. .9993 .999 13.74 1o.6o 3.77

6. .8010 21.70 6.05

a .4989 .50 22.80 33.83 20.19 6.18

D .4735 22.75 19.58 6.21

7. .0969 19.00 6.5o

8. .ooo69 .o01 11.81 9.07 4.09
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APPEIDIX IV

A.4. TABLES V - VI: Charmcteristls of the Polson HPRT

(ko a D and a) and SPET Approximation

A.4.1. TABLES V - 1. 2. 3. 4

, X.. against 112: X..

a a .24853 D = .26129

TABLE V - 1

-.a no =  , (n 013aS1), n 3.

oc ASK SW

MW SPRT* IWEPT 5pM* ImE

0 1. 1. 7. 6. 0.(1.) (7.) (o.)

.1 .9378 .9o 9.08 7.44 2.80
(.9392) (8.92) (2.56)

.2 .6856 9.75 3.66
(.6933) (9.51) (3.43)

S.5391 .50 9.50 7.50 7.03 3.92(.549) (9.28) (3-71)

D .5022 9.39 6.37 3.98
(.5131) (9.18) (3:76)

.4 .1988 7.70 1.09(.2094) (7-59) (3-95)

.5 .0909 .10 6.45 4.o 3.78
(.0980) (6.40) (3.69)
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TABLE V - 2

cx.05, n0  26 (n0 -26) n.- 19

oc ASN SR
Ei

MPRT SPRT* IWRT SPT* 1PRT

0 1. 1. 10. 8. 0.(1.) (10.) (0.)

.1 .9646 .95 13.43 11.12 3.72
(.9663) (12.84) (3.53)

.2 .6W75 15.08 5.21
(.7059) (14.60) (5.07)

0 5167 .50 I4.64 13.47 11.85 5.73
(5278) (14.30) (5.s1)

D .4711 14.43 i0.68 5.84
(.4826) (14.13) (5.60)

.4 .1302 11.00 5.95(.1397) (n.04) (5.65)

.5 .o47 .05 8.72 6.57 5.20
(.0472) (8.89) (4.95)
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TOM v - 3

a-.01, n0 u47 (no-s =47) nr 38

0c AS m

0 1. 1. 17. 12. 0.(1.) (16.) (o.)

.1 .992 .99 23.06 18.84 5.25
(.9935) (22.16) (5.43)

.2 .74173 28.73 8341
(.7606) (28.41) (8.45)

5 .5059 .50 28.21 32.80 214.69
(.5218) (28.30) N

D .4.35 27.70 22.07 9.80
6411591) (27.88) (9.67)

. .o567 18. 9.58
(.0616) (194.) (9.57)

.5 .0080 .01 14.o5 11.13 7.8(.0092) (7-.) 5.6)
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TABrz V - 4

.. 001, n0 -78 (n. -78) n.-63

SASN m
I-m SPIT* MPRT SPRT" Im

0 1. 1. 27. 18. 0.(1.) (25.) (o.)

.1 .9993 .999 36.42 28.83 7.05
(.9993) (34.96) (7.3)

.2 .8084 50.13 12.45
(.8151) (49.02) (12.45)

e .5)66 .50 50.26 714.10 45.24 14.58

D .4247 49.21 4.0.22 15.20
(.4358) (49.oo) (1.57)

.14 .0185 29.98 13.90
(.0205) (30.84) (13.60)

.5 .0006 .001 21.31 17.03 9.80
(.00092) (22.14) (9.76)
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A.4.2. TABLES VI - 1. 2. 3. 4.

NJ: x. a 1. asminst H2: X 2.

a - 1.11427 D - 1.11570

TABLE VI - 1

-. 1, no 17, (too ), n. U

oc ASO SM
HLB

mm SPRT* 8RT SPRT* MPRT

0 1. 1. 3. 3. 0.(J. ) (3.) (o.)

1. .9236 .9o 7.33 5.80 2.86
(.9299) (7.24) (2.83)

1.35 .6150 8.44 3.46
(.6275) (8.17) (3.4)

.5095 .50 8.11 6.97 6..3 3.55
(.5m0) (8.4) (3.51)

D .1916 8.36 6.21 3.56
(. o1No) (8.4) (3.52)

1.75 .2104. 7.35 3.58
(.2193) (7.52) (.3)

2. 0817 .10 6.16 4.61 3.27
(.0o8T) (6.6) (3.24)
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TABLE VI - 2

a u.05pno m26s (u ,26), ;16

OC ASK siW

lo pRT MejS * HLB NET

0 1. 1. 5. 3. 0.(1.) (5.) (o.)

1. .9620 .95 0.58 8.66 3.87
(.9635) (10.46) (3.86)

1.35 .6o6 13.16 4.90
(.6462) (1.313) (4.93)

.5100 .50 13.17 12.51 10.83 5.C4
(.54o) (3.13) (5.o6)

D .4879 13.09 lo.42 5.07
(.4936) (13.10) (5.08)

1.75 .1573 11.07 5.12
(.1607) (11.15) (5.08)

2. .0413 .05 8.80 6.88 4.47(.o0427) (8.91) (4.41)



TABLZ VI - 3

a--.01, n o - 44,(a0 w 44), -a32

o0 AB SW

mm nIT* lawT SPRT* MPRT

0 1. 1. 8. 5. 0.(L)(8.) (o.)

1. .9922 .99 8.i3 114.68 5.67
(.9926) (17.78) (5.70)

1.35 .6824 5.57 8.05
(.6875) (25.39) (8.08)

5 .5066 .50 2.85 30-.6 22.51 8.30
(.5083) (25.60) (8.34)

D .4743 25.58 21.56 8.4
(.4802) (25 .52) (8.39)

1.75 .0792 19.83 8.44
(.0820) (20.00) (8.37)

2. .0079 .01 114.58 n.66 6.5o
(.oo84) (14-76) (6.50)
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TABLE VI - 4

a a .001, no  71, (%s-.771), nF - 57

0c ABN S

mS M* HPRT SPR? *PRT

0 1. 1. 12. 7. 0.(1.) (12) (o.)

1. .9992 .999 28.44 22.46 7.4o(.999) (27.90) (7.42)

1.35 .7315 44.73 12.07(.73) (44.4) (3..15)

8 .5016 .50 45.3 68.82 41.17 12.586506) (45.") (3..2)
D .4648 45.24 39.31 12.71

(.4701) (45.18) (32.63)

1.75 .0320 32.o6 3.34(.033) (32.40) (12.24)

2. .oo076 .001 22.50 17.84 8.4
(.ooo83) (22.84) (8.39)
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APPENDIX V

A.5. TABLE VII : Chazactersticu of the Poisson IRT

(%O = D), SPLT O, SPRT approximtion

and FSST

TABLES VII - 1, 2, 3, 4

'Y: X, a .o1 &Gs'nt R2: X.-.

a - .03909 D = .04299

A.5.1. TABLE VII - 1

a - .1, no- a , - 3 9 , no -22.20, .19.08

1 OE AS SDK0 !WT

.0 1. 1. 1. 29. 25. 0. 0.

.0025 .9958 .9955 1 29.98 26.36 3.84 6.o3

.006 .9776 .982o .98 31.o4 27.98 5.6o 8.90

.01 .9432 .9566 .94 31.84 29.44 6.86 1o.89
.90* 26.57*

.015 .8858 9116 .88 32.36 30.72 8.03 12.53

.02 .8187 .85" .81 32.43 31.45 8.98 13.68

.025 .7469 ,7916 .75 32.16 31.73 9.80 14.52

.03 .6743 .724o .67 31.64 31.63 10.50 15.17

.035 .6033 .6555 .60 30.94 31.24 11.08 15.66

.5479 .6005 .55 30.26 30.74 11.48 15.56

.50* 23.30*
D .4976 .5495 .50 29.56 30.16 11.79 16.17



58

A. 5. 1. TABLE VII - 1 (continued)

S n.1,no =58,n F - 39, ns = 22.20, nD = 19.08

OC ASN SD

14PRT SPRTo 1SST HWRT WPRTo IfI T 8P!Bo

.055 .3628 .4090 .37' 27.21 27.93 12.37 16.43

.07 .2369 .2732 .2 5 24.50 24.81 12.44 16.06

.08 .1759 .2061 .18 22.41 22.78 12.22 15.52

.1 .0950 .1157 .io 19.18 19.17 .1.40 14.08

.10* 12.69,*
S11 .0694 .o865 .07 17.81 17.63 10.91 13.29

A.5.2. TABLE VII - 2

a= .05, no = 85, nF = 63, n 31'.53.. nD  32.03

0C AS 8m

l4PRT SPRTFo  I.mw SPRTo  I PRT SPRTo

.0 1. 1. 1. 41. 33. 0. 0.

.0025 .9986 .9989 .- 42.52 35.18 5.00 7.86

.006 .9896 .9923 .99 44.50 38.23 7.94 12.73

.01 .9664 .9750 .97 46.39 41.42 10.32 16.14

.95* 39.68*

.015 .9175 .9363 .93 48.03 44.68 12.61 19.22

.02 .8501 .8792 .86 48.83 46.96 14.50 21.32
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A.5.2. TABLE VII - 2 (continued)

.05, no a 85, n. - 63, n. - 37.53 n. 32.03

OC AM SDI;

MPRT SPRTo0 FSST M RT SPRT 0 ,HRT MPRTo

.025 .7703 .8076 .79 48.85 48.22 16.13 22.83

.03 .6844 .7268 .71 48.23 48.57 17.54 23.95

.035 .5978 .6423 .62 47.08 48.15 18.74 24.81

..5292 .5738 .55 45.86 47.34 19.54 25.32

.50* 41.84*
D .4672 .5106 .49 44.52 46.26 20.15 25.67

.55 .3054 .3418 .33 39.82 41.81 21.12 25.89

.07 .1681 .1944 .19 33.86 35.51 20.80 24.65

.08 .1097 .1307 .11 30.27 31.57 19.97 23.20

.1 .0448 .0581 .05 24.33 25.04 17.68 19.79
.05* 18.95*

.U .0282 .0388 .03 21.96 22 .46 16.45 18.o9

TABLE VII - 3

a- .01, n0 . 143, nF. 11 7 , n. 78.39, D a 66.26

0C AS SW

I, RT SPRT FMITRT SPET o  I.lPRT SPRT

.0 1. 1. 1. 67. 52. 0. 0.

.0025 .9999 .9999 1.7 71.69 55.47 6.59 9.97

.006 .9991 .9991 l." 75.75 61.o6 10.96 17.30

.01 .9931 .9938 • 99 8o.62 68.19 14.95 24.19
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A.5.3. TABLE VII - 3 (continv-d)

a- .01,o n0 - 1143, - 117 Ds "7 8 .39, nD 6 6 .26

oc ABI SmN
IuwT SPRT 0FM ?PRT SPmT 0 low IPT

.01 .99* 67.25*

.015 .9681 .9717 .97 86.39 77 .28 18.9o 3o.68

.02 .9146 .9223 .91 9o.92 85.29 22.02 34.97

.025 .8315 .8428 .83 93.55 91.18 214.78 37.73

.03 .7264 .7397 .72 9-.05 94.43 27.50 39.75

.035 .617 .6245 .61 92.59 95.02 30.31. 41.49

8 .5164 .5296 .52 90.19 93.77 32.00 42.78

.50* 101.89*
D .43n .4435 .44 87.14 91.39 33.48 43.82

.055 .2233 .2327 .23 75.39 79.66 35.147 44-.99

.07 .0832 .0900 .09 60.69 62.90 33.36 41.61

.08 ,o4ol .01456 .05 52.52 53.27 30.55 37.56

.1 .0084 .15 .o 4o.46 39.21 24.66 28.99

.01* 32.11*

.11 .0037 .0059 .05 36.10 34.31 22.15 25.31
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A.5.4. TABLE VII - 4

S.001, no  243, n. =212,n . 143.97, -120.84

OC_-N SDIT

NPRT E 0  F law SPRTo 0 PRT SPRT0

.0 1. 1. 1. no. 77. 0 0

.0025 .9999 .9999 1. 14.o 82.33 7.92 12.50

.006 .9999 9929 1 120.3 91.07 13.55 22.34

.01 .9993 .9994 1. 128.5 103.3 19.41 33.76

-999* 102.9*

.015 .9917 .9937 .99 14o.0 121.9 26.13 47.39

.02 .9610 .9685 .97 151.3 142.1 31.53 57.45

.025 .8903 .9o05 .91 16o.2 16o.2 35.75 62.96

.03 .7763 .7958 .81 164.8 172.7 39.95 65.63

.035 .6331 .6529 .67 164.0 177.8 44.78 67.97

s .5102 .5272 .55 159.9 176.7 48.78 69.61

.50* 230.2*

D .3992 .4124 .44 153.5 171.1 52.05 73.07

.055 .1526 .1564 .18 127.3 14o.9 55.50 76.19

.07 .0327 .0338 .04 96.64 100.8 h9.71 65.68

.08 .0101 .0110 .01 81.41 81.01 42.26 55.2e

.1 .00077 .0012 .oo1 61.05 56.20 31.68 37.96

.001* 49.15*

.11 .0o2o .oo4 .0002 54.16 48.51 27.91 32.07
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ASN

220

- PRTO

ISO- SPRT*
I t~ol---\FSST

x-no

140

10-

20

Figure 2. Poisson ASN .
H I: A s.01 against H42: A -. 1
S -. 03908T~ D -542 994

0 .01 .02 .03 S D .05 .07 .09 .1 .11
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APPEIDIX VI

A.6. TABLE VIII: Characteristics of the Poisson IPRT

(ho= D) SPRTo SP0 T approximtion and

FSST

TABLES VIII - 1, 2, 3, I

Hl: X = 2. against H2 : X - 4.

a - 2.8854 D - 2.9140

A.6.1. TABLE VIII - 1

aa .l, no = 1O, nF = 6 , n8 = 3.22p nD , 3.10

OC ASN SDI

NMRT SPRI °  FSST HPRT SPRT° 0 PRT SPRT0

.0 1. 1. 1. 2. 2. 0. 0.

1.5 .9925 .9932 .99 3.27 3.08 1.05 1.34

1.75 .9738 .9738 .98 3.62 3.56 1.27 1.76

2.0 .9298 .9410 .94 4.o0 4.12 1.48 2.19

.90* 2.90*
2.25 .8491 .8658 .86 4.33 4.68 1.64 2.54

2.5 .7307 .7462 .75 4.56 5.11 1.75 2.78

2.65 .6463 .6572 .67 4.63 5.27 1.80 2.87

2.75 .5871 .5938 .61 4.64 5.32 1.83 2.91

i .5062 .5065 .54 4.62 5.32 1.86 2.95
.50* 3.48*

D .4893 .4883 .52 4.61 5.31 1.86 2.95

3.25 .3070 .2938 .34 4.37 4.98 1.89 2.93
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A.6.1. TABLE VIII - I (continued)

a - .1, no 10, n F= 6, n. = 3.22, nD = 3.10

OC ASIT SDIT

INRT SPm FSST UMPT SPRT 0 W'T SPRTo

3.5 .2016 .1858 .23 4.08 4.56 1.86 2.8o

3.75 .1254 .16 .14 3.77 4.10 1.79 2.60

4. .0746 .0649 .09 3.45 3.64 1.69 2.34

.1* 2.30*

4.5 .0240 .02n .03 2.90 2.90 1.45 1.82

A. 6.2. TABLE VIII - 2

a .05, no a 13, ri " 8, nr - 5.., nD -. 1

0C ASI SIF

HPRT RTo  FS8T* I,'mT SPET 0 NPRT SPT o

.0 1. 1. 1. 3. 2. 0. 0.

1.5 .9984 .9984 .99 4.35 3.76 1.38 1.65

1.75 .9912 .992 .99 4.96 4.48 1.72 2.28

2.0 .9647 .971 .95 5.65 5.42 2.0A 2.95
.95* 4.33*

2.25 .8973 .9118 .86 6.33 6.45 2.29 3.50

2.5 .7740 .7931t .72 6.85 7.34 2.46 3.82

2.65 .6761 .6944 .62 7.02 7.68 2.53 3.91

2.75 .6047 .6206 .55 7.06 7.80 2.58 3.95

.5052 .5166 .46 7.03 7.83 2.63 3.99
.50* 6.25*
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A.6.2. TABLE VIII - 2

a= .05, no 0 13, n; 8, n. 5.42p nD a 5.21

Oc AST SDH

flaw 0SPET PSST* M sm o  NFI SPRTo

D .4843 .4947 o" 7.01 7.82 2.65 3.99

3.25 .26148 o2641.4 .25 6.51 7.20 2.73 3.94

3.5 .1496 .1466 .15 5.93 6.42 2.68 3.75

3.75 .0772 .0752 .o8 5.30 5.59 2.54 3.42

4. .0370 .o369 .05 4.72 4.83 2.33 3.00

.05* 3.44*
4.5 .0073 .0088 .01 3.78 3.70 1.87 2.20

A.6.3. TABLE VIII -3

a =.01, n 0 22, n4 = 16, n. - 11.25, nD -10.78

00 A." SEE

m~wI SPT FSST* MVW M NMW SPITO

.0 1. 1. 1o. 4. 3. 0. 0.

1.5 .9999 .9999 .1 7.05 5.6 1.67 2.1

1.75 .9993 .9993 17 8.06 6.79 2.23 2.96

2. .9928 .99141 .99 9.39 8.51 2.91 4.2o

.99* 7.33*
2.25 o 567 .96141 .951 U1.00 10.84 3.57 5.149

2.5 .8442 .8601 .79 12.54 13.31 3o97 6.27
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A.6.3. TABLE VIII - 3 (continued)

-. 01, no  22, n m 16, n. = 11.25, nD =10.78

OC ASN Sil

IIRT sT o  FSST* INRT BwTo  MERT SPIRT o

2.65 .7285 .7458 .66 13.16 i4.41 4.10 6.43

2.75 .6356 .6511 .57 13.37 14.84 4.17 6.49

1 .5008 .5112 .55 13.35 14.98 4.30 6.56

.50* 15.23*

D .4723 .4814 .42 13.30 14.95 4.32 6.58

3.25 .1908 .1880 .17 1.88 13.11 4.52 6.65

3.5 .0757 .0723 .07 10-32 10.93 4.31 6.18

3.75 .0250 .0237 .03 8.84 8.89 3.84 5.30

4. .0071 .0072 .003 7.62 7.29 3.29 4.32

.01* 5.83*

4.5 .o02 .007 .001 5.93 5.27 2.39 2.84 1

A. 6.4. TABLE VIII - 4

a. 001, n0 -36,n m 28, n. 20.59% D 19.65

C l ASN S

HPRT sm.T I FSST* IWTRT smRT0  M2RT SR

.0 1. 1. 1. 6. 4. 0 0

1.5 .9999 .9999 1- 10.83 7.86 2.10 2.49

1.75 .9m9 .999 1, 12.42 9.58 2.79 3.65

2. .9993 .9994 1- 14.55 12.25 3.75 5.53
.999* 11.-23*
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A.6.4. TABLE VIII - 4 (continued)

a .001, n0  36 , . 28, a a 20.59, .D 19.65

00 ASN SI

MPRT SPRT FSST* MPRT SPRT o  MPRT SPRT°

2.25 .9871 .9898 .99 17.45 16.51 4.97 8.13

2.5 .96o .9151 .91 20.85 22.15 5.89 10.01

2.65 .7856 .7943 .79 22.51 25.15 6.08 10.22

2.75 .6738 .6783 .68 23.16 26.146 6.16 lO.15

*.0 .4963 .47 23.26 26.99 6.38 10.18

.50* 34.41*
D .4634 .4574 .44 23.16 26.91 6.44 10.21

3.25 .1269 .1143 .14 19.79 22.17 6.88 10.64

3.5 .0307 .0255 .04 16.43 17.10 6.24 9.41

3.75 .0053 .o044 .o 13.64 13.09 5.19 7.37

4. .00069 .o0074 .001 11.57 10.38 4.24 5.57

.001* 8.92.
4.5 .00071 .00034 .00023 8.89 7.32 2.99 3.46
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ASN
35-

-MPRT

S --- FSST

25--

20 . 0

% -s .05

go t

Figure 3. Poisson ASN .

HI: A -2. againt H2 : A -4.
olSj2.8853eOl b, .A3~

1.5 1.75 200 2.5 S5D3. 325 3.5 4.
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COMPIL~ PROGRAM

A.7. K. Fukushima. HPRT-A

1 1200 Y 24M0 Z 24W 80150 W GM
U905 to.f
.906 f
n907 lug. f'

f ao f
9 d f

0911 tof
291 d f
R91 f

2915 tef
a916 f
n917 f
.91 for f
.91 lagos f
n920-tahIs f
.921m a the f

3 d o f
.92 tral f

u926 pos f
n927 Ible f

3 f f
do f

.931 tives f

93 two f
n91 lug.s f
.935 f
n936 f
n937 tas. f

.939 f
md f

n94.1 r f

n9443. so f
n915 tuhi f
.91.6 f
n91.7 ftmo

.9.blitl$ f
n950=$Gs tor f



COMPILE ROMM (cont.) 70

U9514 mahf
n952-rial f'
n9 -$t Be f

n956-t. fn95- reje f
u956 tin'o f
n9574pom f
n958iltlte$ f
n99- a for f
n96 eah f f
n961=rial -t
n9624this f

p96- a the f
f

n O o$ fn96 a.t f

ti f

n7-this 1 f

n974-, thre. f

n976 m f
.9W7 r of $ f

n979-$ecl n f
in IO f.~,n975- the $ f

n O fn9 f f
.97 rog f
397 a 1n t isiu$ f

.981a the$ f

0 f

A9M5 of f In.986 i es I
Ion f
0O f

nq(A- f
399 f

m f

AlOmlat fe
ni poll



COMPILER PROMAM (cont.* 71.

ni 003-$o pro$ f
ni 004- i4ro f
ul003iu rni f

nl 007m$r fh
ni 008-$ aluu - f
ni 0090$ltiv4 f
al 10-$ pois4 f
ul 011 _npro f
hl 012-b. up$ f
ni 01 3-$to lnf f
nl 014~- inity * f
M1015*$thls f
niomi6u$s the f
nl 017 4end of$ f
ni 018-$ tri&4 f'
n10193$ pract$ f
nl 020- ically f
nl 021 4this It f'
nl 0221$s the $ f
n1O23=$&.d. o$ f
nl 021&4fnimubt f
n1025-~e of $ f
nio026-$uampi. f
n1027=$3 $ f

0001 yIp...#y4 y28,...y38 fukuahim 1mat
0116 tYl tY2 tY3 tYI4 f
"0 0 Btyn9tY3O f

0117 ty~1 ty32 ty33 ty5I f
0118 ty35 ty36 ty37 WS ~ f

&1 -(*01&,,Y3* - *015sa1* f
z2-(*Ol say3* - *01 &,yS*) f
z3-(*Ol sPY2* - *01 sa1*)
&u( *Ol &,2aI*) f
y5ms4/s2 f

y78.(-I )/s3 f

ofto ty5 ty6 tV7tV8  f
0079 &Ua905 atn9l 3 f

n9O2-y7-y545 f
tn9O2 f
atn9lla&U919 f
y9-(Y7-y5)/(y 6 -y 8 ) f

0018 ty9 f
0077 atU920 &Un923 f

y10m7541Xy9 f
Y11I-y74+AOy f

0076 ty o tyi i
0075 &U924 &Uc931 f
WA 1&U932 atn936 f

nluO0 f
0002 y(1 000u1l ) -y5+y6xnl f



COMPILER FRiOM~M (cont.)7

nl -y7y~xnl f

Y(lOOOfnl).(-I.) f
0003 nplO~nl ) Y(1 000fu1) f

g4if mi-n5ohma) uO0
n(500+nl ) n(500nj)+I f

0001 yo-yo f
tn(500+nl) tal ta(lOlu1) f
nl -nl +1 f
g2 if n(5004uI-1)-a(lguI..l) v 1f
1i90-nl -1 f
MUM93 &t93 f

0072 U900 f
0671 gtnls tal020 f The and of Part A.

Y39-Y2 f

y2-y28 f
£lo if Y2 u o t
85 f

061.0 n901 -1 f
Y2uy2 f
9411 if y2 u 0
£5 f

00&1 n90-2 f
y2-Y30 f
g120 if y2 u 0
£5 f

6120 n901-3 f
y2-Y31 f
gl2 Ify2uO0 f
£5 f

0121 n9Olu-1 f
y2-Y32 f
S122If y2 u0 f
£5 f

Ige B901-5 f'
72-iY3 f
912 3 ifA uO 0
£5 f

y2-31 f
g12 If y2 u0 f

Ol1li n901 -7 f
y2.735 f
£125if Y2 u0 f'
£5 f'

0125 ft901-8 f
Y2-y36 f
£1 6if y2 u0o

£5 f



COMPILER PROGRAM (cant.) 73
0126 n901.9 f

y2.y37 f
g27 if Y2u0 f
95f

0127 n90 -10 f
Y2uy38 f
g2 if Y2 u0 f
95f

0005 YI000=(*028,(.I)Xy2*) f
tylOQO f
7,n2,,1 oln9029 f

0006 y12-n2 f
Y(10004u2)-(y(1000aU2-1 )xy2)/Yle f
n2-712 f

ty(1000O4u2) tn2 f
am7 YO-YO f

atn994 &U~997 f The end of Part B.
ii 000-yl 000 f
tzI000 t(0.) f

9,pn2,1 ,1 n902# f
0008 u(10004n2) -s(10002-1.)y( 000ft2) f

tz(10004'n2) tU2 f
0009 YO-70 f

atn998 atnIOO5 f The end of Part C.

WO-) (-

51 sn2#i1 n902p f
0050 zn2-1 -s(l oooh2-1 f

tuin2 U2 f
0051 YO-YO f

atm oo6 atni clt I f The end of Part D,
nl -i
nl 050=n501--1 f

001 I 2,aBn',fl j050, f
0012 y(1004n2) =y(i 000ft2)f

913 if nil u (-) f
y"00iy(1 00ftlI) f
ty200l t(1 .) f
gl~ 4

0013 Y2001-0 f
ty2OOl t(1.) f

001i z2 aS~-in5l f
t(0.) t(1.-) tsm0 f The end of Part E,

0015 al -nl +1 f Part F
0017 £21 Ifn(10Ou1 ) v 0 Part G

y(20OOO~il ) 0 f
t(o. ) tal f
nlO051 n(500#u1) -1 f
l 094-.n 500+nl -1) f
n1 095-n( 5004cIl-1 -
20,n2,0,,I,n1095, f



C0O4PIER EP0OAM (cont.) 74

0016 Y( 500i2)-Y( 500ha2)4Y(l 004u3)xy(l 00kkzI-23)f
ty(500+n^) tal t02 f

0620 yO-YO f
SE8 If n(500+u1-I) U 3(500ki1) f

0091 y(500+u2)-0 f
0092 93,n3, 0.1 sal 095, f
0093 y( 500*t2) uY(l)0*62)+Y(1 00*65)xy(l SOuI-a3) f

ty(5004ii2) tail U2 f
co94 yo-yo r

as8 f of Part H.
002 go2 if n(l Omw ) -n(1 0*ul -ljv.r

y(2000*ul)u0 f
t(0.) tal f
ni 051 1n(l Onl )+I f
n1055-n(5004l)-l f
925 f

0022 y(2000+nl )-O f
ni2n Oul61)+l f
nl 053-n(I104u1) f
U10514-n(I04.nl )+1 f
nl055wn(5001u1)-l f
23,nh,nl052,l ,,nl 03 f

0023 y(2000*6l )uy(iOO;hil)4v(1 00#*i)z.(l 000*(10hd1)-mA) f
ty(2000$cl ) tal f
stn944 atu952 f

05 hlO un50046 ) -1 f
ai 0*m500+01-1) f'
nl09-a 500+nl -1 )-1 f
n1052-u(104n1)+1 f
98.,n2snlOSII,1l.n1095, f

006y(500ka2)-O f
27,n5,nM052 l,n2, f

007 y(;Q 5042-Y 5004u)4Yjl 00+83)zy(1 OOkhi.3) f
ty(500hi2) tail 055 tn2 Um3 f

0098 yONyO f
g28 If n(5Ot#6-l) u sn(500*6l)f
90, 2, nl094..l . Al051 a f

ooS6 72n3,aM032 1 A09%, f
0087 Y( 500+n)uY(500ha)+Y(l 009u3)xy(l 006-43) f

ty(500+ti2) tail togl f
0090 YO-YO f ,Teedo at1
0028 .2w(500*1). f h n f atI

Al1057mn(104nl -1) M1
n1 058-n( 500*6 -I) -I f
Y1 5-0 f
29,n~shl 057,1 ,l 058, f

0029 YS yl 3+y(100*n5),s(.2-ns) f
z(2000+nl ) uyl5 f



COMPILER PROCHIAM (cort.) 7
tnl tz(2000#n1) f
atU953 &Ua961 f The end of Part 3.
ni o6i-n(10ow )+i f
n106 2-n( 500u1 )-I f

0031 y(1 004n2)-y(500*u2) f
g32 if nl vn900 f Part K
915 f

0032 y20-0 f
y21-O f
y22-0 f
Y23-0 f

I1 ,l,, n900, f
0033 y2O'72O4 6;-j 200.) f

y21..y21+20001%1)f
y22-y224u1 x( y( =00i +( 20000t1) f

0031t y23-y23hnl xnl xy2~f 110Woee1)) f
0105 ty2O, U900 ty2 t34l f
01o6 atn96 2 atn967 f
0107 ty2ltU900 ty2 ty& f
@MOB atn968 &Un972 f
0109 tyM ty2 ty f
0110 atn973 atn979 f

y2l4-y23-(Y223cy2) f
0111 ty21 t.y2 ty4f
0112 &tU980atn986 f

y25-(*0 6 sy241*) f
0113 tY25 f
M14~ atnIOMl atn1027 f
0115 atn987at&U993 f The end of Part L.

giO if n9mu 0 f

g20, ifn90 u 2 f
g M 1f n901 u3 f
gl22 Ifn901 u 4 f
g123If n901 u5 f
g 2 if n901u 6 f
al 25 1 f 901 u7 f
g1 261ifn 0u 8 f
g 27If *M u 9 f
gl2if u9Wul10 f The and ofPar M.

004le y2uY39 f
0'3 1 ff
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